Open main menu
首页
专栏
课程
分类
归档
Chat
Sci-Hub
谷歌学术
Libgen
GitHub镜像
登录/注册
搜索
关闭
Previous
Previous
Next
Next
【ChatGPT】如何正确的训练gpt的详细教程
sockstack
/
345
/
2023-11-07 00:02:18
<p><span style="color: red; font-size: 18px">ChatGPT 可用网址,仅供交流学习使用,如对您有所帮助,请收藏并推荐给需要的朋友。</span><br><a href="https://ckai.xyz/?sockstack§ion=detail" target="__blank">https://ckai.xyz</a><br><br></p> <article class="baidu_pl"><div id="article_content" class="article_content clearfix"> <link rel="stylesheet" href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/kdoc_html_views-1a98987dfd.css"> <link rel="stylesheet" href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/ck_htmledit_views-25cebea3f9.css"> <div id="content_views" class="markdown_views prism-atom-one-dark"> <svg xmlns="http://www.w3.org/2000/svg" style="display: none;"><path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path></svg><p></p> <div class="toc"> <h3>文章目录</h3> <ul> <li>前言</li> <li>一、准备</li> <li>二、使用步骤</li> <li> <ul> <li>1.如何做到</li> <li>2.读入数据</li> </ul> </li> <li>总结</li> </ul> </div> <p></p> <hr> <h1> <a id="_6"></a>前言</h1> <p>ChatGPT是基于GPT-3.5架构的大型语言模型,由OpenAI发布。该模型可用于各种自然语言处理任务,比如文本生成、对话系统、文本分类等等。为了帮助读者更好地训练自己的ChatGPT模型,本文提供了一份调教教程</p> <h1> <a id="_9"></a>一、准备</h1> <p>首先,您需要安装Python 3.x版本以及pip包管理器。接着,您需要安装Hugging Face Transformers库和PyTorch框架。可以使用以下命令安装这些软件和工具:<br> pip install transformers<br> pip install torch</p> <h1> <a id="_14"></a>二、使用步骤</h1> <h2> <a id="1_15"></a>1.如何做到</h2> <p>收集对话数据集。训练数据是训练ChatGPT模型的重要组成部分。您需要准备并收集一个足够大而具有多样性的对话数据集,比如公开的对话语料库、社交媒体数据、聊天记录等等。也可以利用Web爬虫从互联网上收集数据。</p> <p>预处理数据。在开始训练模型之前,需要对收集的数据进行预处理。这通常包括删除无用标记、修复拼写错误、分割对话数据、格式化对话数据等。</p> <p>训练模型。使用Transformers库中的GPT2LMHeadModel类进行ChatGPT模型的训练。需将预处理的数据加载到模型中,使用模型进行训练。以下是一段示例代码:</p> <pre><code class="prism language-c">from transformers import GPT2LMHeadModel<span class="token punctuation">,</span> GPT2Tokenizer import torchtokenizer <span class="token operator">=</span> GPT2Tokenizer<span class="token punctuation">.</span><span class="token function">from_pretrained</span><span class="token punctuation">(</span><span class="token char">'gpt2'</span><span class="token punctuation">)</span> model <span class="token operator">=</span> GPT2LMHeadModel<span class="token punctuation">.</span><span class="token function">from_pretrained</span><span class="token punctuation">(</span><span class="token char">'gpt2'</span><span class="token punctuation">)</span>data <span class="token operator">=</span> <span class="token function">load_data</span><span class="token punctuation">(</span><span class="token punctuation">)</span> # 加载预处理数据inputs <span class="token operator">=</span> tokenizer<span class="token punctuation">.</span><span class="token function">encode</span><span class="token punctuation">(</span>data<span class="token punctuation">,</span> return_tensors<span class="token operator">=</span><span class="token char">'pt'</span><span class="token punctuation">)</span> outputs <span class="token operator">=</span> <span class="token function">model</span><span class="token punctuation">(</span>inputs<span class="token punctuation">)</span>loss <span class="token operator">=</span> outputs<span class="token punctuation">.</span>loss loss<span class="token punctuation">.</span><span class="token function">backward</span><span class="token punctuation">(</span><span class="token punctuation">)</span>optimizer <span class="token operator">=</span> torch<span class="token punctuation">.</span>optim<span class="token punctuation">.</span><span class="token function">Adam</span><span class="token punctuation">(</span>model<span class="token punctuation">.</span><span class="token function">parameters</span><span class="token punctuation">(</span><span class="token punctuation">)</span><span class="token punctuation">)</span> optimizer<span class="token punctuation">.</span><span class="token function">step</span><span class="token punctuation">(</span><span class="token punctuation">)</span> </code></pre> <h2> <a id="2_40"></a>2.读入数据</h2> <p>在训练过程中,需要调整许多超参数,比如学习率、批次大小、训练时长等等。还可以使用早停策略,在模型达到最优性能时停止训练以避免过拟合。</p> <p>评估模型性能。使用人类评估器对生成的文本进行自然和流畅程度的评估,还可以使用BLEU、ROUGE、Perplexity等指标来评估模型性能。</p> <p>调整模型。如果评估发现ChatGPT模型的性能不够理想,可以通过改变训练数据、调整模型架构或增加训练时间等方法改善模型性能。</p> <p>使用模型。可以使用ChatGPT模型生成文本,也可以将模型应用于对话系统。使用示例代码:</p> <pre><code class="prism language-c">from transformers import GPT2LMHeadModel<span class="token punctuation">,</span> GPT2Tokenizertokenizer <span class="token operator">=</span> GPT2Tokenizer<span class="token punctuation">.</span><span class="token function">from_pretrained</span><span class="token punctuation">(</span><span class="token char">'gpt2'</span><span class="token punctuation">)</span> model <span class="token operator">=</span> GPT2LMHeadModel<span class="token punctuation">.</span><span class="token function">from_pretrained</span><span class="token punctuation">(</span><span class="token char">'path/to/model'</span><span class="token punctuation">)</span>prompt <span class="token operator">=</span> <span class="token string">"Hello, how are you today?"</span> encoded_prompt <span class="token operator">=</span> tokenizer<span class="token punctuation">.</span><span class="token function">encode</span><span class="token punctuation">(</span>prompt<span class="token punctuation">,</span> add_special_tokens<span class="token operator">=</span>False<span class="token punctuation">,</span> return_tensors<span class="token operator">=</span><span class="token char">'pt'</span><span class="token punctuation">)</span>generated <span class="token operator">=</span> model<span class="token punctuation">.</span><span class="token function">generate</span><span class="token punctuation">(</span>encoded_prompt<span class="token punctuation">,</span> max_length<span class="token operator">=</span><span class="token number">50</span><span class="token punctuation">,</span> do_sample<span class="token operator">=</span>True<span class="token punctuation">)</span> decoded_generated <span class="token operator">=</span> tokenizer<span class="token punctuation">.</span><span class="token function">decode</span><span class="token punctuation">(</span>generated<span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">,</span> skip_special_tokens<span class="token operator">=</span>True<span class="token punctuation">)</span><span class="token function">print</span><span class="token punctuation">(</span>decoded_generated<span class="token punctuation">)</span> </code></pre> <p>该处使用的url网络请求的数据。</p> <hr> <h1> <a id="_66"></a>总结</h1> <p>以上是一份简单的ChatGPT调教教程,希望能对读者有所帮助。</p> </div> <link href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/markdown_views-98b95bb57c.css" rel="stylesheet"> <link href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/style-c216769e99.css" rel="stylesheet"> </div> <div id="treeSkill"></div> </article>
【ChatGPT】如何正确的训练gpt的详细教程
作者
sockstack
许可协议
CC BY 4.0
发布于
2023-11-07
修改于
2024-12-22
上一篇:软件:常用 Linux 软件汇总,值得收藏
下一篇:三分钟搭建一个自己的 ChatGPT (从开发到上线)
尚未登录
登录 / 注册
文章分类
博客重构之路
5
Spring Boot简单入门
4
k8s 入门教程
0
MySQL 知识
1
NSQ 消息队列
0
ThinkPHP5 源码分析
5
使用 Docker 从零开始搭建私人代码仓库
3
日常开发汇总
4
标签列表
springboot
hyperf
swoole
webman
php
多线程
数据结构
docker
k8s
thinkphp
mysql
tailwindcss
flowbite
css
前端