Open main menu
首页
专栏
课程
分类
归档
Chat
Sci-Hub
谷歌学术
Libgen
GitHub镜像
登录/注册
搜索
关闭
Previous
Previous
Next
Next
真正的官方ChatGPT镜像
sockstack
/
276
/
2023-11-08 22:02:46
<p><span style="color: red; font-size: 18px">ChatGPT 可用网址,仅供交流学习使用,如对您有所帮助,请收藏并推荐给需要的朋友。</span><br><a href="https://ckai.xyz/?sockstack§ion=detail" target="__blank">https://ckai.xyz</a><br><br></p> <div class="Post-RichTextContainer"><div class="css-1yuhvjn"><div class="css-376mun"> <div class="css-h7wqi8"><div class="css-1uwh0yg"><div class="css-lcgmxk"><div><div class="Catalog isCatalogV2 css-2hy5iv" data-za-detail-view-name="正文"><div class="css-8kjoqe"><div class="css-19vq0tc"> <span style="display: inline-flex; align-items: center;"><svg width="1.2em" height="1.2em" viewbox="0 0 24 24" class="ZDI ZDI--Catalog24" fill="currentColor"><path d="M10 5a1 1 0 011-1h10a1 1 0 110 2H11a1 1 0 01-1-1zm4 6a1 1 0 100 2h7a1 1 0 100-2h-7zm0 7a1 1 0 100 2h7a1 1 0 100-2h-7zm-8.335.25a.915.915 0 01-.915-.915V12.75H10a.75.75 0 000-1.5H4.75V6.665c0-.505.41-.915.915-.915H7a.75.75 0 000-1.5H5.665A2.415 2.415 0 003.25 6.665v10.67a2.415 2.415 0 002.415 2.415H10a.75.75 0 000-1.5H5.665z"></path></svg></span><div class="css-1czzy4f">目录</div> </div></div></div></div></div></div></div> <div class="RichText ztext Post-RichText css-117anjg" options="[object Object]"> <h3 data-first-child="" id="h_645260746_0" data-into-catalog-status="">视频演示</h3> <p data-pid="aRpHa9er">地址:</p> <div class="highlight"><pre><code class="language-csharp"><span class="n">https</span><span class="p">:</span><span class="c1">//www.bilibili.com/video/BV17M4y1s7Hi/?spm_id_from=333.999.0.0 </span></code></pre></div> <h3 id="h_645260746_1" data-into-catalog-status="">地址</h3> <p data-pid="kMQHozsX">镜像地址:</p> <div class="highlight"><pre><code class="language-csharp"><span class="n">https</span><span class="p">:</span><span class="c1">//ai.aiforme.cloud/ </span></code></pre></div> <p data-pid="XjHrxiou">需要找我要授权码才能使用~下面我演示下我认为不错的功能。界面如下: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic4.zhimg.com/v2-97e0e118388431c1060c0788a9155793_b.jpg" data-size="normal" data-rawwidth="1643" data-rawheight="791" class="origin_image zh-lightbox-thumb" width="1643" data-original="https://pic4.zhimg.com/v2-97e0e118388431c1060c0788a9155793_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="https://pic4.zhimg.com/80/v2-97e0e118388431c1060c0788a9155793_720w.webp" data-size="normal" data-rawwidth="1643" data-rawheight="791" class="origin_image zh-lightbox-thumb lazy" width="1643" data-original="https://pic4.zhimg.com/v2-97e0e118388431c1060c0788a9155793_r.jpg" data-actualsrc="https://pic4.zhimg.com/v2-97e0e118388431c1060c0788a9155793_b.jpg" data-original-token="v2-f6b9c768f034ac7be40005b271ebc968" height="791" data-lazy-status="ok"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="2Y5ooSVq"> 插件界面如下: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic4.zhimg.com/v2-32fffd9640f1e2ad56a44d3007655767_b.jpg" data-size="normal" data-rawwidth="1659" data-rawheight="812" class="origin_image zh-lightbox-thumb" width="1659" data-original="https://pic4.zhimg.com/v2-32fffd9640f1e2ad56a44d3007655767_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="https://pic4.zhimg.com/80/v2-32fffd9640f1e2ad56a44d3007655767_720w.webp" data-size="normal" data-rawwidth="1659" data-rawheight="812" class="origin_image zh-lightbox-thumb lazy" width="1659" data-original="https://pic4.zhimg.com/v2-32fffd9640f1e2ad56a44d3007655767_r.jpg" data-actualsrc="https://pic4.zhimg.com/v2-32fffd9640f1e2ad56a44d3007655767_b.jpg" data-original-token="v2-50f3d4aa1b3e4d20a72a67ef803b52a4" height="812" data-lazy-status="ok"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="1OYhRlt6"> 没错,官方所有插件和代码解释器都在镜像,效果一模一样!为了演示它的真实性,下面我做出部分功能测试。</p> <h3 id="h_645260746_2" data-into-catalog-status="">代码解释器</h3> <h3 id="h_645260746_3" data-into-catalog-status="">代码文件分析</h3> <p data-pid="5F64hbrb">选中这个: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic3.zhimg.com/v2-f9fe26a301bd8ac8abda50a3e4982a32_b.jpg" data-size="normal" data-rawwidth="938" data-rawheight="460" class="origin_image zh-lightbox-thumb" width="938" data-original="https://pic3.zhimg.com/v2-f9fe26a301bd8ac8abda50a3e4982a32_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='938'%20height='460'></svg>" data-size="normal" data-rawwidth="938" data-rawheight="460" class="origin_image zh-lightbox-thumb lazy" width="938" data-original="https://pic3.zhimg.com/v2-f9fe26a301bd8ac8abda50a3e4982a32_r.jpg" data-actualsrc="https://pic3.zhimg.com/v2-f9fe26a301bd8ac8abda50a3e4982a32_b.jpg" data-original-token="v2-b3f7ff692d467043f960dd8962e3f719"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="AG6TECBh"> 这里我上传一个python文件让它进行分析,以下可见分析很准确: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic1.zhimg.com/v2-689d363996565ecf0423d87fd5da32bc_b.jpg" data-size="normal" data-rawwidth="1117" data-rawheight="807" class="origin_image zh-lightbox-thumb" width="1117" data-original="https://pic1.zhimg.com/v2-689d363996565ecf0423d87fd5da32bc_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1117'%20height='807'></svg>" data-size="normal" data-rawwidth="1117" data-rawheight="807" class="origin_image zh-lightbox-thumb lazy" width="1117" data-original="https://pic1.zhimg.com/v2-689d363996565ecf0423d87fd5da32bc_r.jpg" data-actualsrc="https://pic1.zhimg.com/v2-689d363996565ecf0423d87fd5da32bc_b.jpg" data-original-token="v2-b8878a8b94022622b97898f806993808"></div> <figcaption>在这里插入图片描述</figcaption></figure><p class="ztext-empty-paragraph"><br></p> <h3 id="h_645260746_4" data-into-catalog-status="">压缩包分析</h3> <p data-pid="trGOI69F">我们可能需要分析一整个项目,所以需要以压缩包形式进行上次,如下所示: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic1.zhimg.com/v2-3a9bdadf1b646c3432abf85f131dc140_b.jpg" data-size="normal" data-rawwidth="816" data-rawheight="222" class="origin_image zh-lightbox-thumb" width="816" data-original="https://pic1.zhimg.com/v2-3a9bdadf1b646c3432abf85f131dc140_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='816'%20height='222'></svg>" data-size="normal" data-rawwidth="816" data-rawheight="222" class="origin_image zh-lightbox-thumb lazy" width="816" data-original="https://pic1.zhimg.com/v2-3a9bdadf1b646c3432abf85f131dc140_r.jpg" data-actualsrc="https://pic1.zhimg.com/v2-3a9bdadf1b646c3432abf85f131dc140_b.jpg" data-original-token="v2-a93b77899755c4f51bc968cbfbcc2c53"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="ZAsVrG5f"> 回答如下,100%的正确率回答了我这个项目的每个文件内容: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic1.zhimg.com/v2-95cc1388c10efed92e12abc30bc06e60_b.jpg" data-size="normal" data-rawwidth="1087" data-rawheight="663" class="origin_image zh-lightbox-thumb" width="1087" data-original="https://pic1.zhimg.com/v2-95cc1388c10efed92e12abc30bc06e60_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1087'%20height='663'></svg>" data-size="normal" data-rawwidth="1087" data-rawheight="663" class="origin_image zh-lightbox-thumb lazy" width="1087" data-original="https://pic1.zhimg.com/v2-95cc1388c10efed92e12abc30bc06e60_r.jpg" data-actualsrc="https://pic1.zhimg.com/v2-95cc1388c10efed92e12abc30bc06e60_b.jpg" data-original-token="v2-8593500cc6e4f00e511242badd8a7b71"></div> <figcaption>在这里插入图片描述</figcaption></figure><p class="ztext-empty-paragraph"><br></p> <h3 id="h_645260746_5" data-into-catalog-status="">数据分析</h3> <p data-pid="t0vEY7Nk">除了上传代码文件,我们还可以上传数据文件进行分析,例如我上传了一个超市销售的文件: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic1.zhimg.com/v2-8fd0243444a6d80c1fec9d4991f62f58_b.jpg" data-size="normal" data-rawwidth="987" data-rawheight="724" class="origin_image zh-lightbox-thumb" width="987" data-original="https://pic1.zhimg.com/v2-8fd0243444a6d80c1fec9d4991f62f58_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='987'%20height='724'></svg>" data-size="normal" data-rawwidth="987" data-rawheight="724" class="origin_image zh-lightbox-thumb lazy" width="987" data-original="https://pic1.zhimg.com/v2-8fd0243444a6d80c1fec9d4991f62f58_r.jpg" data-actualsrc="https://pic1.zhimg.com/v2-8fd0243444a6d80c1fec9d4991f62f58_b.jpg" data-original-token="v2-1b0ecefa426b1d7229be718fc9211ef7"></div> <figcaption>在这里插入图片描述</figcaption></figure><p class="ztext-empty-paragraph"><br></p> <p class="ztext-empty-paragraph"><br></p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic3.zhimg.com/v2-045b010762797ffb796bca73947c7952_b.jpg" data-size="normal" data-rawwidth="1154" data-rawheight="652" class="origin_image zh-lightbox-thumb" width="1154" data-original="https://pic3.zhimg.com/v2-045b010762797ffb796bca73947c7952_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1154'%20height='652'></svg>" data-size="normal" data-rawwidth="1154" data-rawheight="652" class="origin_image zh-lightbox-thumb lazy" width="1154" data-original="https://pic3.zhimg.com/v2-045b010762797ffb796bca73947c7952_r.jpg" data-actualsrc="https://pic3.zhimg.com/v2-045b010762797ffb796bca73947c7952_b.jpg" data-original-token="v2-9ced396034d97fa0e7c3b9c8c0dda753"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="dWiq_1JV"> 这里我们接着进行提问,比如查看数据的描述性统计、检查缺失值、查看各个类别的数量: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic2.zhimg.com/v2-5675e0be4cbb7ec1710a13b0793ef8f5_b.jpg" data-size="normal" data-rawwidth="974" data-rawheight="702" class="origin_image zh-lightbox-thumb" width="974" data-original="https://pic2.zhimg.com/v2-5675e0be4cbb7ec1710a13b0793ef8f5_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='974'%20height='702'></svg>" data-size="normal" data-rawwidth="974" data-rawheight="702" class="origin_image zh-lightbox-thumb lazy" width="974" data-original="https://pic2.zhimg.com/v2-5675e0be4cbb7ec1710a13b0793ef8f5_r.jpg" data-actualsrc="https://pic2.zhimg.com/v2-5675e0be4cbb7ec1710a13b0793ef8f5_b.jpg" data-original-token="v2-9fe9855bb862c928db9e4d0187af645a"></div> <figcaption>在这里插入图片描述</figcaption></figure><p class="ztext-empty-paragraph"><br></p> <p data-pid="p0NEC1w3">这里我还可以继续要求它帮我做可视化分析:</p> <p class="ztext-empty-paragraph"><br></p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic2.zhimg.com/v2-370397f92019d42abc2b20ed1b445d49_b.jpg" data-size="normal" data-rawwidth="1015" data-rawheight="674" class="origin_image zh-lightbox-thumb" width="1015" data-original="https://pic2.zhimg.com/v2-370397f92019d42abc2b20ed1b445d49_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1015'%20height='674'></svg>" data-size="normal" data-rawwidth="1015" data-rawheight="674" class="origin_image zh-lightbox-thumb lazy" width="1015" data-original="https://pic2.zhimg.com/v2-370397f92019d42abc2b20ed1b445d49_r.jpg" data-actualsrc="https://pic2.zhimg.com/v2-370397f92019d42abc2b20ed1b445d49_b.jpg" data-original-token="v2-0612ff8fa81ab9bdc29811727b031d7a"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="mFkfp_M7"> 这里我还想继续追加一些提问,比如使用机器学习算法来实现数学建模: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic2.zhimg.com/v2-8a8b1a0566b29d9019b9c54d1599f6e1_b.jpg" data-size="normal" data-rawwidth="1009" data-rawheight="377" class="origin_image zh-lightbox-thumb" width="1009" data-original="https://pic2.zhimg.com/v2-8a8b1a0566b29d9019b9c54d1599f6e1_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1009'%20height='377'></svg>" data-size="normal" data-rawwidth="1009" data-rawheight="377" class="origin_image zh-lightbox-thumb lazy" width="1009" data-original="https://pic2.zhimg.com/v2-8a8b1a0566b29d9019b9c54d1599f6e1_r.jpg" data-actualsrc="https://pic2.zhimg.com/v2-8a8b1a0566b29d9019b9c54d1599f6e1_b.jpg" data-original-token="v2-fdd6fdc8fb9d1f2e66a410d9e3f9303d"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="-G_xjdyf"> 继续告诉它目标:根据购买的商品和其他信息来预测一个顾客是会员还是非会员 </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic2.zhimg.com/v2-f309cf5d54dde128a83fe2d96dd90529_b.jpg" data-size="normal" data-rawwidth="1177" data-rawheight="741" class="origin_image zh-lightbox-thumb" width="1177" data-original="https://pic2.zhimg.com/v2-f309cf5d54dde128a83fe2d96dd90529_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1177'%20height='741'></svg>" data-size="normal" data-rawwidth="1177" data-rawheight="741" class="origin_image zh-lightbox-thumb lazy" width="1177" data-original="https://pic2.zhimg.com/v2-f309cf5d54dde128a83fe2d96dd90529_r.jpg" data-actualsrc="https://pic2.zhimg.com/v2-f309cf5d54dde128a83fe2d96dd90529_b.jpg" data-original-token="v2-49177f474839924d52a27cbb52ff610a"></div> <figcaption>在这里插入图片描述</figcaption></figure><p class="ztext-empty-paragraph"><br></p> <div class="highlight"><pre><code class="language-csharp"><span class="k">from</span> <span class="n">sklearn</span><span class="p">.</span><span class="n">model_selection</span> <span class="n">import</span> <span class="n">train_test_split</span> <span class="k">from</span> <span class="n">sklearn</span><span class="p">.</span><span class="n">preprocessing</span> <span class="n">import</span> <span class="n">LabelEncoder</span> <span class="err">#</span> <span class="n">Select</span> <span class="n">the</span> <span class="n">features</span> <span class="n">and</span> <span class="n">the</span> <span class="n">target</span> <span class="n">features</span> <span class="p">=</span> <span class="p">[</span><span class="err">'</span><span class="n">Branch</span><span class="err">'</span><span class="p">,</span> <span class="err">'</span><span class="n">City</span><span class="err">'</span><span class="p">,</span> <span class="err">'</span><span class="n">Gender</span><span class="err">'</span><span class="p">,</span> <span class="err">'</span><span class="n">Product</span> <span class="n">line</span><span class="err">'</span><span class="p">,</span> <span class="err">'</span><span class="n">Unit</span> <span class="n">price</span><span class="err">'</span><span class="p">,</span> <span class="err">'</span><span class="n">Quantity</span><span class="err">'</span><span class="p">,</span> <span class="err">'</span><span class="n">Payment</span><span class="err">'</span><span class="p">,</span> <span class="err">'</span><span class="n">cogs</span><span class="err">'</span><span class="p">,</span> <span class="err">'</span><span class="n">gross</span> <span class="n">income</span><span class="err">'</span><span class="p">,</span> <span class="err">'</span><span class="n">Rating</span><span class="err">'</span><span class="p">]</span> <span class="n">target</span> <span class="p">=</span> <span class="err">'</span><span class="n">Customer</span> <span class="n">type</span><span class="err">'</span> <span class="err">#</span> <span class="n">Copy</span> <span class="n">the</span> <span class="n">original</span> <span class="n">data</span> <span class="n">data_encoded</span> <span class="p">=</span> <span class="n">data</span><span class="p">.</span><span class="n">copy</span><span class="p">()</span> <span class="err">#</span> <span class="n">Label</span> <span class="n">encode</span> <span class="n">the</span> <span class="n">categorical</span> <span class="n">features</span> <span class="n">le</span> <span class="p">=</span> <span class="n">LabelEncoder</span><span class="p">()</span> <span class="k">for</span> <span class="n">column</span> <span class="k">in</span> <span class="n">data_encoded</span><span class="p">[</span><span class="n">features</span><span class="p">].</span><span class="n">select_dtypes</span><span class="p">(</span><span class="n">include</span><span class="p">=</span><span class="err">'</span><span class="kt">object</span><span class="err">'</span><span class="p">).</span><span class="n">columns</span><span class="p">:</span> <span class="n">data_encoded</span><span class="p">[</span><span class="n">column</span><span class="p">]</span> <span class="p">=</span> <span class="n">le</span><span class="p">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">data_encoded</span><span class="p">[</span><span class="n">column</span><span class="p">])</span> <span class="err">#</span> <span class="n">Label</span> <span class="n">encode</span> <span class="n">the</span> <span class="n">target</span> <span class="n">data_encoded</span><span class="p">[</span><span class="n">target</span><span class="p">]</span> <span class="p">=</span> <span class="n">le</span><span class="p">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">data_encoded</span><span class="p">[</span><span class="n">target</span><span class="p">])</span> <span class="err">#</span> <span class="n">Split</span> <span class="n">the</span> <span class="n">data</span> <span class="k">into</span> <span class="n">training</span> <span class="k">set</span> <span class="n">and</span> <span class="n">test</span> <span class="k">set</span> <span class="n">X_train</span><span class="p">,</span> <span class="n">X_test</span><span class="p">,</span> <span class="n">y_train</span><span class="p">,</span> <span class="n">y_test</span> <span class="p">=</span> <span class="n">train_test_split</span><span class="p">(</span><span class="n">data_encoded</span><span class="p">[</span><span class="n">features</span><span class="p">],</span> <span class="n">data_encoded</span><span class="p">[</span><span class="n">target</span><span class="p">],</span> <span class="n">test_size</span><span class="p">=</span><span class="m">0.2</span><span class="p">,</span> <span class="n">random_state</span><span class="p">=</span><span class="m">42</span><span class="p">)</span> <span class="n">X_train</span><span class="p">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">X_test</span><span class="p">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">y_train</span><span class="p">.</span><span class="n">shape</span><span class="p">,</span> <span class="n">y_test</span><span class="p">.</span><span class="n">shape</span> </code></pre></div> <p class="ztext-empty-paragraph"><br></p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic4.zhimg.com/v2-4a316b1241b89386662b35debeeba787_b.jpg" data-size="normal" data-rawwidth="910" data-rawheight="727" class="origin_image zh-lightbox-thumb" width="910" data-original="https://pic4.zhimg.com/v2-4a316b1241b89386662b35debeeba787_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='910'%20height='727'></svg>" data-size="normal" data-rawwidth="910" data-rawheight="727" class="origin_image zh-lightbox-thumb lazy" width="910" data-original="https://pic4.zhimg.com/v2-4a316b1241b89386662b35debeeba787_r.jpg" data-actualsrc="https://pic4.zhimg.com/v2-4a316b1241b89386662b35debeeba787_b.jpg" data-original-token="v2-c79ebad75e18d06290ac10dc8c08c98c"></div> <figcaption>在这里插入图片描述</figcaption></figure><p class="ztext-empty-paragraph"><br></p> <div class="highlight"><pre><code class="language-csharp"><span class="k">from</span> <span class="n">sklearn</span><span class="p">.</span><span class="n">ensemble</span> <span class="n">import</span> <span class="n">RandomForestClassifier</span> <span class="k">from</span> <span class="n">sklearn</span><span class="p">.</span><span class="n">metrics</span> <span class="n">import</span> <span class="n">accuracy_score</span> <span class="err">#</span> <span class="n">Initialize</span> <span class="n">the</span> <span class="n">Random</span> <span class="n">Forest</span> <span class="n">Classifier</span> <span class="n">rf</span> <span class="p">=</span> <span class="n">RandomForestClassifier</span><span class="p">(</span><span class="n">random_state</span><span class="p">=</span><span class="m">42</span><span class="p">)</span> <span class="err">#</span> <span class="n">Train</span> <span class="n">the</span> <span class="n">model</span> <span class="n">rf</span><span class="p">.</span><span class="n">fit</span><span class="p">(</span><span class="n">X_train</span><span class="p">,</span> <span class="n">y_train</span><span class="p">)</span> <span class="err">#</span> <span class="n">Make</span> <span class="n">predictions</span> <span class="k">on</span> <span class="n">the</span> <span class="n">test</span> <span class="k">set</span> <span class="n">y_pred</span> <span class="p">=</span> <span class="n">rf</span><span class="p">.</span><span class="n">predict</span><span class="p">(</span><span class="n">X_test</span><span class="p">)</span> <span class="err">#</span> <span class="n">Calculate</span> <span class="n">the</span> <span class="n">accuracy</span> <span class="n">of</span> <span class="n">the</span> <span class="n">model</span> <span class="n">accuracy</span> <span class="p">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_test</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">)</span> <span class="n">accuracy</span> </code></pre></div> <p data-pid="daYMxV3k">并且直接帮我运行出了结果: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic3.zhimg.com/v2-01dd6775275c38d007e3d19228077d3a_b.jpg" data-size="normal" data-rawwidth="1035" data-rawheight="587" class="origin_image zh-lightbox-thumb" width="1035" data-original="https://pic3.zhimg.com/v2-01dd6775275c38d007e3d19228077d3a_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1035'%20height='587'></svg>" data-size="normal" data-rawwidth="1035" data-rawheight="587" class="origin_image zh-lightbox-thumb lazy" width="1035" data-original="https://pic3.zhimg.com/v2-01dd6775275c38d007e3d19228077d3a_r.jpg" data-actualsrc="https://pic3.zhimg.com/v2-01dd6775275c38d007e3d19228077d3a_b.jpg" data-original-token="v2-fb4f484da6e6903b6263a738f9c64bc0"></div> <figcaption>在这里插入图片描述</figcaption></figure><p class="ztext-empty-paragraph"><br></p> <h3 id="h_645260746_6" data-into-catalog-status="">官方插件</h3> <p data-pid="Gc2n4zZ3">插件这么多,哪些插件好?这里是上面最流行的几个插件: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic3.zhimg.com/v2-c8f130a78150c36a8ad5e2dc6e5c53a6_b.jpg" data-size="normal" data-rawwidth="1638" data-rawheight="760" class="origin_image zh-lightbox-thumb" width="1638" data-original="https://pic3.zhimg.com/v2-c8f130a78150c36a8ad5e2dc6e5c53a6_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1638'%20height='760'></svg>" data-size="normal" data-rawwidth="1638" data-rawheight="760" class="origin_image zh-lightbox-thumb lazy" width="1638" data-original="https://pic3.zhimg.com/v2-c8f130a78150c36a8ad5e2dc6e5c53a6_r.jpg" data-actualsrc="https://pic3.zhimg.com/v2-c8f130a78150c36a8ad5e2dc6e5c53a6_b.jpg" data-original-token="v2-3149ac1aa14515e681b3ba32a7f7d88f"></div> <figcaption>在这里插入图片描述</figcaption></figure><figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic2.zhimg.com/v2-ed3d83900f065015205e0fec7c51c301_b.jpg" data-size="normal" data-rawwidth="1534" data-rawheight="627" class="origin_image zh-lightbox-thumb" width="1534" data-original="https://pic2.zhimg.com/v2-ed3d83900f065015205e0fec7c51c301_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1534'%20height='627'></svg>" data-size="normal" data-rawwidth="1534" data-rawheight="627" class="origin_image zh-lightbox-thumb lazy" width="1534" data-original="https://pic2.zhimg.com/v2-ed3d83900f065015205e0fec7c51c301_r.jpg" data-actualsrc="https://pic2.zhimg.com/v2-ed3d83900f065015205e0fec7c51c301_b.jpg" data-original-token="v2-4d85f91d3c67719c62d2d3aa80cc898e"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="LhNX_8an"> 基本就是PDF分析,可视化,文献搜索。这里我主推Show Me Diagrams、Link Reader这两个。第一个是可以绘制各种各样的图像,第二个是可以阅读链接。</p> <p data-pid="IjVGXaW0">下面我来做一个演示。</p> <p data-pid="1aSR1g7H"><b>阅读链接并可视</b> 这个目标为例,分析我的文章:</p> <div class="highlight"><pre><code class="language-csharp"><span class="n">https</span><span class="p">:</span><span class="c1">//blog.csdn.net/weixin_46211269/article/details/131816123 </span></code></pre></div> <p data-pid="m8cWOnWf">选上这两个插件: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic3.zhimg.com/v2-a2b9f0f771a46a4f8fa0ee53f589821a_b.jpg" data-size="normal" data-rawwidth="852" data-rawheight="418" class="origin_image zh-lightbox-thumb" width="852" data-original="https://pic3.zhimg.com/v2-a2b9f0f771a46a4f8fa0ee53f589821a_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='852'%20height='418'></svg>" data-size="normal" data-rawwidth="852" data-rawheight="418" class="origin_image zh-lightbox-thumb lazy" width="852" data-original="https://pic3.zhimg.com/v2-a2b9f0f771a46a4f8fa0ee53f589821a_r.jpg" data-actualsrc="https://pic3.zhimg.com/v2-a2b9f0f771a46a4f8fa0ee53f589821a_b.jpg" data-original-token="v2-8be16ce26694078dca22b70634ade29e"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="azkLVXj0"> 回复如下: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic1.zhimg.com/v2-ed98a886f6bb7240ebe07a93d33d8d44_b.jpg" data-size="normal" data-rawwidth="963" data-rawheight="777" class="origin_image zh-lightbox-thumb" width="963" data-original="https://pic1.zhimg.com/v2-ed98a886f6bb7240ebe07a93d33d8d44_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='963'%20height='777'></svg>" data-size="normal" data-rawwidth="963" data-rawheight="777" class="origin_image zh-lightbox-thumb lazy" width="963" data-original="https://pic1.zhimg.com/v2-ed98a886f6bb7240ebe07a93d33d8d44_r.jpg" data-actualsrc="https://pic1.zhimg.com/v2-ed98a886f6bb7240ebe07a93d33d8d44_b.jpg" data-original-token="v2-4e624420a52bb113a08852876a7f5c15"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="FIV8WzAx"> 接着,我希望它根据理解的文章内容,绘制出绘制思维导图,可以看到正在使用Show Me Diagrams插件,得到如下: </p> <figure data-size="normal"><noscript><img referrerpolicy="no-referrer" src="https://pic3.zhimg.com/v2-ae023fd463db05e51a4b2e8cc9f06372_b.jpg" data-size="normal" data-rawwidth="1004" data-rawheight="571" class="origin_image zh-lightbox-thumb" width="1004" data-original="https://pic3.zhimg.com/v2-ae023fd463db05e51a4b2e8cc9f06372_r.jpg"></noscript> <div><img referrerpolicy="no-referrer" src="data:image/svg+xml;utf8,<svg%20xmlns='http://www.w3.org/2000/svg'%20width='1004'%20height='571'></svg>" data-size="normal" data-rawwidth="1004" data-rawheight="571" class="origin_image zh-lightbox-thumb lazy" width="1004" data-original="https://pic3.zhimg.com/v2-ae023fd463db05e51a4b2e8cc9f06372_r.jpg" data-actualsrc="https://pic3.zhimg.com/v2-ae023fd463db05e51a4b2e8cc9f06372_b.jpg" data-original-token="v2-b188d0bc0c5503017b30621d63ee5df1"></div> <figcaption>在这里插入图片描述</figcaption></figure><p data-pid="m41e58r9"> 当然,可视化除了绘制思维导图,还可以绘制各种各样的比如ER图、流程图、柱形图等等这里不做演示。</p> <p data-pid="68F5Uz9N">除此之外,还有更多的插件,这里我不做演示了,可以看到现在我已经成功把官方的所有界面和插件已经搬运到国内了,效果非常好。需要体验(pay,not free)国内版的官方网站,评论区留言。</p> <p class="ztext-empty-paragraph"><br></p> <p data-pid="24uihfSE">除此之外,我还有另外两个系统,网站分别如下,你可以在上购买会员也可以加我V购买系统,包搭建:</p> <p data-pid="LszPHpBK">1)稳定版GPT镜像导航:<a href="https://link.zhihu.com/?target=https%3A//zc.zhangsan.cloud/" class=" external" target="_blank" rel="nofollow noreferrer"><span class="invisible">https://</span><span class="visible">zc.zhangsan.cloud/</span><span class="invisible"></span></a><br>2)开发版镜像导航:<a href="https://link.zhihu.com/?target=https%3A//chatsforme.shop/" class=" external" target="_blank" rel="nofollow noreferrer"><span class="invisible">https://</span><span class="visible">chatsforme.shop/</span><span class="invisible"></span></a><br>3)免费版镜像:<a href="https://link.zhihu.com/?target=https%3A//jian.zhangsan.cloud/" class=" external" target="_blank" rel="nofollow noreferrer"><span class="invisible">https://</span><span class="visible">jian.zhangsan.cloud/</span><span class="invisible"></span></a></p> </div> </div></div></div>
真正的官方ChatGPT镜像
作者
sockstack
许可协议
CC BY 4.0
发布于
2023-11-08
修改于
2025-01-21
上一篇:软件:常用 Linux 软件汇总,值得收藏
下一篇:真正的官方ChatGPT镜像
尚未登录
登录 / 注册
文章分类
博客重构之路
5
Spring Boot简单入门
4
k8s 入门教程
0
MySQL 知识
1
NSQ 消息队列
0
ThinkPHP5 源码分析
5
使用 Docker 从零开始搭建私人代码仓库
3
日常开发汇总
4
标签列表
springboot
hyperf
swoole
webman
php
多线程
数据结构
docker
k8s
thinkphp
mysql
tailwindcss
flowbite
css
前端