Open main menu
首页
专栏
课程
分类
归档
Chat
Sci-Hub
谷歌学术
Libgen
GitHub镜像
登录/注册
搜索
关闭
Previous
Previous
Next
Next
轻松搭建自己的ChatGPT聊天机器人,让AI陪你聊天!
sockstack
/
233
/
2023-11-19 12:00:31
<p><span style="color: red; font-size: 18px">ChatGPT 可用网址,仅供交流学习使用,如对您有所帮助,请收藏并推荐给需要的朋友。</span><br><a href="https://ckai.xyz/?sockstack§ion=detail" target="__blank">https://ckai.xyz</a><br><br></p> <article class="baidu_pl"><div id="article_content" class="article_content clearfix"> <link rel="stylesheet" href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/kdoc_html_views-1a98987dfd.css"> <link rel="stylesheet" href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/ck_htmledit_views-25cebea3f9.css"> <div id="content_views" class="markdown_views prism-atom-one-dark"> <svg xmlns="http://www.w3.org/2000/svg" style="display: none;"><path stroke-linecap="round" d="M5,0 0,2.5 5,5z" id="raphael-marker-block" style="-webkit-tap-highlight-color: rgba(0, 0, 0, 0);"></path></svg><p>随着人工智能技术的发展,聊天机器人已经成为了我们生活中的一部分。无论是在客服机器人上还是智能助手上,聊天机器人都能够给我们带来真正的便利和快乐。现在,你也可以轻松搭建自己的ChatGPT聊天机器人,和它天马行空地聊天!</p> <h2> <a id="_2"></a>第一步:准备所需材料</h2> <p>首先,你需要一些基本的技术知识和一些必备的软件工具,包括:</p> <ol> <li> <p>Python基本语法:ChatGPT是使用Python开发的,因此你需要先掌握一些基本的Python语法。</p> </li> <li> <p>PyTorch:ChatGPT是使用PyTorch构建的,因此在搭建ChatGPT之前,你需要先了解PyTorch的基本使用方法。</p> </li> <li> <p>Transformers库:这是一个用于自然语言处理的Python库,可以帮助我们轻松地搭建和训练ChatGPT模型。</p> </li> </ol> <h2> <a id="ChatGPT_12"></a>第二步:搭建ChatGPT模型</h2> <p>现在你已经准备好了所有必要的软件工具,那么就让我们开始搭建ChatGPT模型吧!</p> <p>以下是一个简单的示例代码,可以使用Transformers和PyTorch搭建ChatGPT模型:</p> <pre><code class="prism language-python"><span class="token keyword">import</span> torch <span class="token keyword">from</span> transformers <span class="token keyword">import</span> GPT2Tokenizer<span class="token punctuation">,</span> GPT2LMHeadModel<span class="token comment"># 加载预训练模型和分词器</span> tokenizer <span class="token operator">=</span> GPT2Tokenizer<span class="token punctuation">.</span>from_pretrained<span class="token punctuation">(</span><span class="token string">'gpt2'</span><span class="token punctuation">)</span> model <span class="token operator">=</span> GPT2LMHeadModel<span class="token punctuation">.</span>from_pretrained<span class="token punctuation">(</span><span class="token string">'gpt2'</span><span class="token punctuation">)</span><span class="token comment"># 输入文本</span> text <span class="token operator">=</span> <span class="token string">'Hello, how are you?'</span><span class="token comment"># 将文本编码为ID</span> input_ids <span class="token operator">=</span> tokenizer<span class="token punctuation">.</span>encode<span class="token punctuation">(</span>text<span class="token punctuation">,</span> return_tensors<span class="token operator">=</span><span class="token string">'pt'</span><span class="token punctuation">)</span><span class="token comment"># 生成响应</span> output <span class="token operator">=</span> model<span class="token punctuation">.</span>generate<span class="token punctuation">(</span>input_ids<span class="token punctuation">,</span> max_length<span class="token operator">=</span><span class="token number">1000</span><span class="token punctuation">)</span><span class="token comment"># 将响应解码为文本</span> output_text <span class="token operator">=</span> tokenizer<span class="token punctuation">.</span>decode<span class="token punctuation">(</span>output<span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">,</span> skip_special_tokens<span class="token operator">=</span><span class="token boolean">True</span><span class="token punctuation">)</span> <span class="token keyword">print</span><span class="token punctuation">(</span>output_text<span class="token punctuation">)</span> </code></pre> <p>这段代码使用了GPT2模型和分词器,从输入文本中生成了一个1000个字符的响应。</p> <h2> <a id="ChatGPT_42"></a>第三步:训练ChatGPT模型</h2> <p>如果你想让你的ChatGPT模型可以更加智能和对话更加流畅,那么你需要利用机器学习的方法对模型进行训练。</p> <p>以下是一个简单的示例代码,可以使用Transformers和PyTorch训练ChatGPT模型:</p> <pre><code class="prism language-python"><span class="token keyword">import</span> torch <span class="token keyword">from</span> transformers <span class="token keyword">import</span> GPT2Tokenizer<span class="token punctuation">,</span> GPT2LMHeadModel<span class="token punctuation">,</span> TextDataset<span class="token punctuation">,</span> DataCollatorForLanguageModeling<span class="token punctuation">,</span> Trainer<span class="token punctuation">,</span> TrainingArguments<span class="token comment"># 加载预训练模型和分词器</span> tokenizer <span class="token operator">=</span> GPT2Tokenizer<span class="token punctuation">.</span>from_pretrained<span class="token punctuation">(</span><span class="token string">'gpt2'</span><span class="token punctuation">)</span> model <span class="token operator">=</span> GPT2LMHeadModel<span class="token punctuation">.</span>from_pretrained<span class="token punctuation">(</span><span class="token string">'gpt2'</span><span class="token punctuation">)</span><span class="token comment"># 加载数据集</span> dataset <span class="token operator">=</span> TextDataset<span class="token punctuation">(</span>tokenizer<span class="token operator">=</span>tokenizer<span class="token punctuation">,</span> file_path<span class="token operator">=</span><span class="token string">'data.txt'</span><span class="token punctuation">,</span> block_size<span class="token operator">=</span><span class="token number">128</span><span class="token punctuation">)</span><span class="token comment"># 设置训练参数</span> training_args <span class="token operator">=</span> TrainingArguments<span class="token punctuation">(</span>output_dir<span class="token operator">=</span><span class="token string">'./results'</span><span class="token punctuation">,</span> <span class="token comment"># output directory</span>overwrite_output_dir<span class="token operator">=</span><span class="token boolean">True</span><span class="token punctuation">,</span> <span class="token comment"># overwrite the content of the output directory</span>num_train_epochs<span class="token operator">=</span><span class="token number">1</span><span class="token punctuation">,</span> <span class="token comment"># number of training epochs</span>per_device_train_batch_size<span class="token operator">=</span><span class="token number">32</span><span class="token punctuation">,</span> <span class="token comment"># batch size for training</span>save_steps<span class="token operator">=</span><span class="token number">1000</span><span class="token punctuation">,</span> <span class="token comment"># save checkpoint every 1000 steps</span>save_total_limit<span class="token operator">=</span><span class="token number">2</span><span class="token punctuation">,</span> <span class="token comment"># only keep last 2 checkpoints</span>warmup_steps<span class="token operator">=</span><span class="token number">500</span><span class="token punctuation">,</span> <span class="token comment"># number of warmup steps for learning rate scheduler</span>weight_decay<span class="token operator">=</span><span class="token number">0.01</span><span class="token punctuation">,</span> <span class="token comment"># strength of weight decay</span>logging_dir<span class="token operator">=</span><span class="token string">'./logs'</span><span class="token punctuation">,</span> <span class="token comment"># directory for storing logs</span>logging_steps<span class="token operator">=</span><span class="token number">1000</span><span class="token punctuation">,</span> <span class="token comment"># log every 1000 steps</span><span class="token punctuation">)</span><span class="token comment"># 设置DataCollator</span> data_collator <span class="token operator">=</span> DataCollatorForLanguageModeling<span class="token punctuation">(</span>tokenizer<span class="token operator">=</span>tokenizer<span class="token punctuation">,</span> mlm<span class="token operator">=</span><span class="token boolean">False</span><span class="token punctuation">,</span> <span class="token punctuation">)</span><span class="token comment"># 构建Trainer</span> trainer <span class="token operator">=</span> Trainer<span class="token punctuation">(</span>model<span class="token operator">=</span>model<span class="token punctuation">,</span>args<span class="token operator">=</span>training_args<span class="token punctuation">,</span>data_collator<span class="token operator">=</span>data_collator<span class="token punctuation">,</span>train_dataset<span class="token operator">=</span>dataset<span class="token punctuation">,</span> <span class="token punctuation">)</span><span class="token comment"># 开始训练</span> trainer<span class="token punctuation">.</span>train<span class="token punctuation">(</span><span class="token punctuation">)</span> </code></pre> <p>这段代码使用了TextDataset和DataCollatorForLanguageModeling来读取和处理数据集,使用GPT2模型和分词器训练ChatGPT模型,并将结果保存在results目录中。</p> <h2> <a id="ChatGPT_92"></a>第四步:让ChatGPT机器人和你聊天</h2> <p>现在你已经成功搭建和训练了自己的ChatGPT机器人了!那么让我们来看看如何和它进行聊天。</p> <p>以下是一个简单的示例代码,可以使用训练好的ChatGPT机器人进行聊天:</p> <pre><code class="prism language-python"><span class="token keyword">import</span> torch <span class="token keyword">from</span> transformers <span class="token keyword">import</span> GPT2Tokenizer<span class="token punctuation">,</span> GPT2LMHeadModel<span class="token comment"># 加载训练好的模型和分词器</span> tokenizer <span class="token operator">=</span> GPT2Tokenizer<span class="token punctuation">.</span>from_pretrained<span class="token punctuation">(</span><span class="token string">'results'</span><span class="token punctuation">)</span> model <span class="token operator">=</span> GPT2LMHeadModel<span class="token punctuation">.</span>from_pretrained<span class="token punctuation">(</span><span class="token string">'results'</span><span class="token punctuation">)</span><span class="token comment"># 开始聊天</span> <span class="token keyword">while</span> <span class="token boolean">True</span><span class="token punctuation">:</span><span class="token comment"># 获取用户输入</span>user_input <span class="token operator">=</span> <span class="token builtin">input</span><span class="token punctuation">(</span><span class="token string">'You: '</span><span class="token punctuation">)</span><span class="token comment"># 将用户输入编码为ID</span>input_ids <span class="token operator">=</span> tokenizer<span class="token punctuation">.</span>encode<span class="token punctuation">(</span>user_input<span class="token punctuation">,</span> return_tensors<span class="token operator">=</span><span class="token string">'pt'</span><span class="token punctuation">)</span><span class="token comment"># 生成响应</span>output <span class="token operator">=</span> model<span class="token punctuation">.</span>generate<span class="token punctuation">(</span>input_ids<span class="token punctuation">,</span> max_length<span class="token operator">=</span><span class="token number">1000</span><span class="token punctuation">)</span><span class="token comment"># 将响应解码为文本</span>output_text <span class="token operator">=</span> tokenizer<span class="token punctuation">.</span>decode<span class="token punctuation">(</span>output<span class="token punctuation">[</span><span class="token number">0</span><span class="token punctuation">]</span><span class="token punctuation">,</span> skip_special_tokens<span class="token operator">=</span><span class="token boolean">True</span><span class="token punctuation">)</span><span class="token comment"># 输出机器人的响应</span><span class="token keyword">print</span><span class="token punctuation">(</span><span class="token string">'ChatGPT: '</span> <span class="token operator">+</span> output_text<span class="token punctuation">)</span> </code></pre> <p>这段代码使用了训练好的模型和分词器,可以和ChatGPT机器人进行聊天交流!</p> <h2> <a id="_126"></a>结语</h2> <p>通过这份资料,你已经学会了如何搭建、训练和使用ChatGPT聊天机器人了!希望这份资料能够帮助你打造出一款智能、有趣的聊天机器人,让你的生活充满更多色彩!</p> </div> <link href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/editerView/markdown_views-98b95bb57c.css" rel="stylesheet"> <link href="https://csdnimg.cn/release/blogv2/dist/mdeditor/css/style-c216769e99.css" rel="stylesheet"> </div> <div id="treeSkill"></div> </article>
轻松搭建自己的ChatGPT聊天机器人,让AI陪你聊天!
作者
sockstack
许可协议
CC BY 4.0
发布于
2023-11-19
修改于
2024-12-25
上一篇:软件:常用 Linux 软件汇总,值得收藏
下一篇:ChatGPT API接口使用+fine tune微调+prompt介绍
尚未登录
登录 / 注册
文章分类
博客重构之路
5
Spring Boot简单入门
4
k8s 入门教程
0
MySQL 知识
1
NSQ 消息队列
0
ThinkPHP5 源码分析
5
使用 Docker 从零开始搭建私人代码仓库
3
日常开发汇总
4
标签列表
springboot
hyperf
swoole
webman
php
多线程
数据结构
docker
k8s
thinkphp
mysql
tailwindcss
flowbite
css
前端